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Abs t r ac t - -Fo r  a homogeneous ly  deformed rock composed  initially of an isotropic distribution of object shapes,  
finite strain may  be de te rmined  from the correlation between the orientations of ei ther two-dimensional  or  one-  
dimensional  sample  cuts and the frequencies with which they intersect marker  objects. Mimran  previously pub- 
lished an incorrect me thod  for p lanar  samples  under  the heading 'density distribution technique ' .  Methods  are 
described by which the three-dimensional  strain may  be directly determined f rom six general  samples,  either 
linear or  planar.  Construct ion of two-dimensional  ellipses as an  intermediate  step is unnecessary  and enforces 
practical difficulties. 

These  me thods  may  be simplified by use  of samples parallel to known principal axes or  planes of the finite 
strain. In this case the same large errors may  arise f rom slight misorientat ion of samples  as with o ther  me thods  of 
strain measurement .  A new quick me t hod  is proposed,  combining linear and planar  measurements  of frequencies 
of intersected objects, which is thought  to be the first me thod  to eircumvent  a large part  of the error f rom this 
error source. For  example,  if t rue X :  Z ratio is 9 : 1, and orientat ions in the  X Z p l a n e  are mis judged by 8 °, normal  
me thods  give 38% error  where the  new me thod  gives, with care, an  error  of  1.9%. For  me thods  of strain 
measu remen t  such as are described here  the concept of strain ellipsoid is unnecessari ly limiting, and should be 
abandoned.  

I N T R O D U C T I O N  

THE PRINCIPLE of strain measurement methods under the 
heading of 'density-distribution technique' was intro- 
duced by Mimran (1976), from which the following 
quotation is taken (pp. 175-176): "The technique of 
finite strain analysis described here is based on indirect 
measurements of deformed strain indicators. In other 
words, no actual measurements of the dimensions of 
individual markers are required. The basic principle is 
that the longer the dimension of an object in a certain 
orientation, the higher the probability of its being 
intersected by a plane perpendicular to this orienta- 
tion". So by measuring the density of intersected objects 
on planes of different orientations it is possible to judge 
the relative 'length' of the strain ellipsoid in the direction 
perpendicular to each section plane, and from that to 
reconstruct the complete strain ellipsoid. 

The principle of such strain measurement techniques 
is a good one, as it is applicable to objects of unknown 
initial shape (provided they were isotropically arranged 
in the first instance), and statistical errors are minirniTed 
by counting over large numbers of intersected objects. 
Unfortunately, the development of the technique given 
by Mimran (1976) is spurious on account of a simplistic 
extrapolation of two-dimensional geometry into three 
dimensions, which leads to very large errors in practice. 
This paper attempts to explain the geometry necessary 
to re-establish density-distribution techniques on a cor- 
rect basis, and then considers methods of application. 

All the methods specifically mentioned here depend 
upon two assumptions: that the initial distribution of 
shapes was isotropic prior to deformation; and that the 
objects counted on sample lines or planes have 
deformed homogeneously with their matrix. More 

widely relevant observations arise from the discussion, 
particularly concerning errors when principal planes are 
assumed, and concerning unnecessary constraints which 
an intermediate step of evaluating two-dimensional 
ellipses may impose on determinations of strain in three 
dimensions. 

T H E  D I M E N S I O N  OF A N  E L L I P S O I D  P E R -  
P E N D I C U L A R  T O  A P L A N E  

For a density distribution technique, a comparison is 
made of several differently oriented sample planes. 
These are assumed to have contained the same density 
of intersections of marker objects (e.g. ooids, calci- 
spheres, feldspar phenocrysts, sand grains) in their ini- 
tial states. The initial dimensions of all these sample 
planes are represented by the circular sections of an ini- 
tial sphere of unit radius having the (unknown) initial 
orientations of these samples. Deformation produces 
the observed sample orientations. It also changes the 
size of each sample to an extent represented by the ratio 
of the area of a parallel section through the finite strain 
ellipsoid to the area of a section of the initial sphere. 
Assuming each sample plane intersects the same objects 
as it did before deformation, the ratio of observed 
density to initial density is given by the inverse of this 
ratio of areas. The initial density is unknown. Therefore, 
the absolute area of each section through the finite strain 
ellipsoid cannot be determined. However, the ratio of 
any two section areas is determinable, being given by the 
inverse ratio of the corresponding sample densities. 

For any section cut through the centre of an ellipsoid, 
the volume of the ellipsoid is given by 4/3 Ah, where 'A' 
is the area of the section and 'h' is the 'perpen- 
dicular height'. Perpendicular height means here the dis- 
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Fig. 1. Sketch of half an ellipsoid to illustrate terms used in the text. 
Line OK represents the longest (X) axis, rising to the right and slightly 
away from the observer. The (YZ) plane perpendicular to this axis is 
represented by GLJ. The horizontal plane A B C D  through the centre 
of the ellipsoid, O, cuts the ellipsoid surface along the section ellipse 
EFGHIJ, of area A. The horizontal plane tangent to the ellipsoid at its 
highest point, M, is at height h above ABCD. The dashed line FNI  
joins all points where the ellipsoid surface contains the vertical direc- 
tion. This line, which does not lie in a plane, is the ellipsoid edge when 
viewed vertically. It projects vertically onto A B C D  as the projection 
ellipse FPIQ. Lines on ABCDwhich  are vertical projections of vertical 
tangent planes to the ellipsoid are tangents to this projection ellipse. 
Perpendicular lines from O to such tangents are coincident with the 
lines perpendicular to the corresponding tangent planes of the ellip- 
soid in 3 - D  which have relative lengths estimated from areal density 
distributions on corresponding parallel sample planes which share the 

vertical linear direction. 

tance separating the section plane from a parallel 
tangent plane to the ellipsoid (Fig. 1). Therefore,  for a 
pair of sections through the same ellipsoid, the ratio of 
their perpendicular heights is equal to the inverse ratio 
of their areas. This is equal to the ratio of intersected 
object densities of samples which they represent. A 
series of measured sample densities may, therefore,  be 
considered as a measure of the distance from the centre 
of the ellipsoid to a corresponding series of bounding 
tangent planes. Their  absolute distances are not known, 
but relative distances are sufficient to determine the 
orientations and the ratios between the lengths of the 
axes of the finite strain ellipsoid. 

S E C T I O N  A N D  P R O J E C T I O N  ELLIPSES OF A N  
E L L I P S O I D  

Lengths of lines f rom the centre of a strain ellipsoid to 
its surface are by definition representative of strained 
lengths which were initially equal. When a specimen is 
ex~nined  on a sample plane and relative real lengths, of 
whatever kind, in different directions in the plane are 
compared, the representative lengths in the strain ellip- 
soid are those lying in a section through the ellipsoid 
centre parallel to the sample. This 'strain ellipse' I call a 
'section ellipse' of the strain ellipsoid. When several 
strain ellipses are used to reconstruct the strain ellipsoid, 
it is sections of the ellipsoid which are combined. 

Suppose a density distribution technique is applied to 
a family of sample planes sharing a common linear direc- 
tion. This will give a relative measure of perpendicular 
distances from the centre of the strain ellipsoid to a 
family of tangent planes which share the common direc- 
tion. This situation can be bet ter  viewed by projecting 
along the common direction onto  a perpendicular plane 
(Fig. 1). The lines which are projections of the tangent 

planes are now tangent to an ellipse which is the projec- 
tion of the edge of the strain ellipsoid viewed down the 
projection direction. This ellipse I call the 'projection 
ellipse' of the strain ellipsoid. It is not generally similar in 
orientation or ellipticity to the strain ellipse of the plane 
in which it lies. 

The two ellipses become identical in the case of a prin- 
cipal plane, but errors from slight deviation from prin- 
cipal planes are even larger in strains calculated on the 
basis of identity of section and projection ellipses than in 
strains calculated on the assumption that either is an 
exact principal plane (see later discussion). 

E Q U A T I O N S  OF A S E C T I O N  ELLIPSE A N D  A 
P R O J E C T I O N  ELLIPSE 

To illustrate the relationship between section and 
projection ellipses, consider orthogonal reference direc- 
tions of which two lie in the plane to be considered, but 
which are not generally related to the principal axes of 
the ellipsoid. The third reference direction will be the 
direction of projection for the projection ellipse. Take 
the following general equation and specific example: 

f x  2 + #y2 + hz 2 + j y z  + k z x  + Ixy = 1 

x 2 + y 2  + 4 z  2 + 3 y z + 3 z x + x y =  1. 

The section ellipse on the plane parallel to x and y axes 
is the locus of points obeying the ellipsoid equation and 
for which z = 0. Hence: 

f x  2 + gy 2 + lxy = 1 

X 2 + y2 + x y  = 1. 

To find the projection ellipse consider the ellipsoid 
equation written as an equation in z: 

hz  2 + ( jy  + k x ) z  + ( f x  2 + gy2 + Ixy - 1) = 0. 

Any chosen value of x and y can be taken to specify a line 
parallel to z in space, which will penetrate the ellipsoid if 
any real solution giving z exists for that x and y. Such a 
line will generally penetrate the ellipsoid twice, corres- 
ponding to two possible values for z. The ellipsoid edge 
as viewed down z is where the two z values become 
coincident. For  this situation, the ellipsoid equation can 
be written in the form: 

(hl /2 z + ( f x  2 + gy2 + Ixy - 1)1/2) 2 = 0. 

This gives two identical solutions of z (of no further 
interest), but this form is only correct for the ellipsoid 
provided: 

2h l /2 ( f x  2 + gy2 + lxy - 1) x/2 = ( jy  + kx). 

This equation linking x and y must be true for the ellip- 
soid edge and for any projection of it down z. Squaring 
both sides and rearranging, it gives the following equa- 
tion of the projection ellipse in normal form: 

( f--k2/4h)x 2 + (g-j2/4h)y2 + ( 1 - - 2 j k / 4 h ) x y  = 1. 

For the example this gives: 

(7/16)x 2 + (7/16)y 2 - (1 /8)xy  = 1. 
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This example is chosen to highlight the differences be- 
tween section and project ion ellipse. In this case the long 
axis direction of one actually corresponds to the short 
axis direction of the other.  In general they will lie 
oblique to each other. The semiaxis ratios are for this 
section ellipse ~/3 : 1, and for the projection ellipse 
2 : X/3. 

ON DETERMINATION A N D  COMBINATION OF 
PROJECTION ELLIPSES 

Although not advised as a method of determining the 
three-dimensional strain state of a rock, one way would 
be to determine projection ellipses of the strain ellipsoid 
and then combine them to give the strain ellipsoid. 

The only method of determination of a projection 
ellipse apparent  to this author is by the measurement  of 
intersected object density on each of three different 
planes sharing the projection direction. In theory, use of 
two such measurements plus knowledge of the projec- 
tion ellipse orientation would suffice, but there is no 
apparent method by which this orientation may be 
determined. In particular, the long axis of the projection 
ellipse will not generally be parallel either to the pre- 
ferred elongation direction of objects in the plane of the 
ellipse (i.e. the major  axis of the parallel section ellipse) 
or the trace of the X Y  plane of the strain ellipsoid.Three 
projection ellipses may be combined to give the strain 
ellipsoid, but the method is quite different from those 
discussed by Ramsay (1967, pp. 142-149 and 199-200) 
and by Roberts  & Siddans (1971), for combination of 
section ellipses. The necessary algebra for determina- 
tion of projection ellipses and for their combination, is 
outlined in Appendix B. 

Mimran (1976) failed to distinguish between projec- 
tion and section ellipses of the strain ellipsoid. Believing 
them to be the same thing, he naturally suggested use of 
the most easily available information. Specifically, he 
constructed ellipses from two lengths, measured by 
object densities, plus the preferred object elongation 
direction. As this combines lengths belonging to the 
projection ellipse with the orientation of the section 
ellipse, the result is neither a good projection nor a good 
section of the strain ellipsoid. The ellipsoid produced by 
combining these as if they were sections, bears no sen- 
sible relationship to the three dimensional strain. 

Mimran tackled a practical mat ter  not dealt with in 
detail here. The mathematics of this paper assumes a 
two-dimensional sample, such as a cut surface. If a thin 
section is used in transmitted light, some correction may 
be necessary for sample thickness. Such a sample may be 
treated as two-dimensional if the objects are an order  of 
magnitude or more greater  in size than the section thick- 
ness. The method will fail if objects are minute relative 
to section thickness, because in this case the number  of 
objects per unit volume would be counted in every case, 
with no variation with sample orientation. For  inter- 
mediate object sizes, say within one order  of magnitude 
either way of sample thickness, a correction factor 
should be used. 

There  is an important methodological difference be- 
tween projection ellipse and section ellipse techniques. 
Section ellipses (strain ellipses) may be determined in 
diverse ways, and each parallels a real sample plane of 
study. Their  combination to give the full three- 
dimensional strain is often a distinct synthetic final step 
in the procedure of strain determination. Projection 
ellipses, in contrast, only arise from object intersection 
density measurements,  which could be combined to give 
the three-dimensional strain directly. Their  only use is 
the calculation of this 3-D strain. Calculation of projec- 
tion ellipses as a discrete procedural  step is therefore 
without justification. Furthermore,  such a step enforces 
unnecessary practical constraints. The sample planes 
must then lie in groups of three sharing a common direc- 
tion. To reduce the number of sample planes from nine 
to six, yet still determine three projection ellipses, 
further requires that three of the sample planes each 
contain two of the projection directions. These con- 
straints are totally unnecessary, as the 3 - D  strain may be 
established from any six general sample planes. If over- 
determination is intended this may also be done by using 
additional sampling orientations, without requiring any 
thought of common directions (see Methods section, 
below). 

AREAL DENSITY DISTRIBUTION METHODS 

General method 

Use sample planes in six different orientations, 
obtaining a value for the intersected object  density on 
each, plus its orientation. Calculate the three- 
dimensional strain directly. 

For good results the six planes should each be 
approximately equally spaced around a sphere. Imagine 
cubic-close-packed spheres. Around a central sphere 
there are twelve neighbours, one each end of six axial 
directions, with an interaxial angle of 60 °. The best 
arrangement of sample planes is with their poles near to 
this regular pattern of axial directions. Potential errors 
in the final strain values depend on the arrangement of 
orientations used, and are not easily calculated. 

For  each sample plane, determine its orientation 
accurately. This paper  assumes that this orientation is 
given as strike (et) and dip (13) (see Appendix A), but 
suitable algebra could be devised for other  specifications 
without difficulty. Measure the overall density of objects 
intersected per unit area (d). Evaluate the coefficients of 
the following equation: 

(sin20t sin2 fl/dZ)t l t + (COSZ0t sin2 fl/d2)t 22 

+ (cos 2 fl/d2)ta3 + ( - 2  sin ~t cos ot sinEfl/d2)t12 

+ (2 sin ct sin fl cos fl/dE)t13 
1 

+ ( - 2 cos ot sin fl cos fl/d2)t23 = ~ .  

Take the equations so formed, one for each sample 
plane, as a simultaneous set, and solve for tll, t22, t33, t12, 
t13, t23. (These are overdetermined if more than six sam- 
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pies are used.) Set up a symmetric matrix T of these ele- 
ments, and eliminate 'C'  by enforcing: det T = 1. Find 
the principal quadratic extensions hi, h2, h3 by solving 
the equation: det (T-h i )  = 0, where I is the 'identity' or 
'unit '  matrix. 

For  each quadratic extension h, find the direction 
cosines of its principal axial direction (the components 
of vector x) by solving Tx = hx for the ratio of these 
components,  and then scaling them so that their sum of 
squares is 1. 

For  details see Appendix C. 

Principal planes method 

Assuming the principal strain axes are known, find a 
value for the intersected object density on samples 
parallel to each principal plane. These values are in the 
ratio of the axial lengths of the strain ellipsoid. This 
approximation depends on how well the orientation of 
the principal planes can be defined. It is quick. For  an 
alternative, more  accurate, quick method,  and for a 
discussion of errors, see later sections. Note here that 
errors arising from bad definition of principal planes are 
in general no bet ter  and no worse than for other  
methods. 

L I N E A R  I N T E R S E C T I O N  L E N G T H  M E T H O D S  

An alternative to measuring the density of 2 - D  object 
intersections on sample planes is to measure the fre- 
quency of 1 - D  object intersections along sample linear 
directions. It is well in the context of this paper, to be 
explicit about differences and similarities in the two 
approaches. 

The basis of the linear intersection length technique is 
to trace along a sample line of known orientation on a 
plane of study, and to record the number  of objects 
passed through, or simply the number  of boundaries 
crossed, in a certain distance. By using a series of 
parallel lines and obtaining the overall average length 
per object, counting statistics can, as with the areal 
density distribution technique, be good, The overall 
intersection length per object is proport ional  to the 
length in that direction f rom the strain ellipsoid centre to 
its surface. This is a normal 'strained length' measure- 
ment, in contrast to the length to a parallel tangent plane 
given by the areal density distribution technique. 

Combinations of linear intersection length measure- 
ments in three directions on a plane establish the strain 
ratio and orientation of a normal strain (section) ellipse. 
The ellipse given by combinations of areal density 
distribution measurements,  f rom planes sharing a 
common projection direction, was a projection ellipse of 
the strain ellipsoid. 

Three  general plane orientations are sufficient to give 
six general, independent,  measures of linear intersection 
length from which the full 3 -D strain may be calculated. 
With areal density distribution measurements,  six 
general sample planes were needed.  The number  of 
planes is reduced to two, and to three, respectively, if the 

principal strain axes are known and sections cut along 
principal planes. 

Using linear intersection lengths, the strain may be 
overdetermined without use of more than three planes 
of study, though additional planes may be more advan- 
tageous. With areal density distributions a new sample 
orientation was required for each additional measure- 
ment. 

Several similarities in the two approaches exist. Each 
can define 3 - D  strain completely (except for volume 
change a n d  body rotation) from six general measure- 
ments. Definition of 2 - D  ellipses as an intermediate step 
requires collection of redundant  data, or requires that 
special common orientations are used for sampling, 
shared by pairs of ellipse planes. However ,  note that if 
ellipses are used, it is not just semi-axis ratio and 
orientation that are to be combined. These methods 
actuaIly determine, rather than assume, values for the 
relative dimensions of the 2 - D  ellipses, because the 
proportionality of intersection densities or lengths exists 
fully in three dimensions. On the other  hand, this is pre- 
cisely why the intermediate step of determining 2 - D  
ellipses is not of advantage. Direct analogy may be made 
between the following linear intersection length 
methods proposed and those for areal density distribu- 
tions given earlier. 

General method 

Use planes of study in three orientations, counting 
intersection lengths in six general directions as near 
equally spaced (60 °) around a sphere as possible. Take 
each length, l, to be a vector length in its direction, the 
local x* direction, specified in terms of its strike (a), dip 
(13) and pitch (~/) (see Appendix A). If in the unstrained 
state each such vector x had length c, then the following 
equations can be applied: 

i )  = = 

x* Rx 

X = S x  0 

x T x 0  = C2. 

In these equations matrix R is specified in terms of et, 13, 
~/ (equivalent to E in Appendix A) and matrix S 
describes the strain (as in Appendix C). Defining a 
matrix U = (S-1) T S -1, these equations combine to: 

(l 0 0)RUR -1 0 = c  2. 

\ 0 /  

This is a linear equation in the elements of the symmetric 
matrix U, in terms of the common unknown 'c', and the 
known coefficients, which are for each measured line its 
intersection length '/' and the elements of R. Six such 
simultaneous equations may be solved for the elements 
of U, and exactly the same procedure adopted as for the 
matrix T in Appendix C, except that the eigen values of 
U will be the inverse quadratic extensions of the strain. 
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Principal planes method 

Cut  p l anes  ( two w o u l d  suffice)  such tha t  each  pr in -  
c ipa l  s t ra in  d i r ec t ion  l ies in a p l a n e  of  s tudy,  a n d  m e a s u r e  
the  in t e r sec t ion  lengths  in these  d i rec t ions .  T h e s e  a re  in 
the  r a t io  of  the  p r inc ipa l  axia l  l engths  of  the  s t ra in  e l l ip-  
soid.  E r r o r s  a re  d i scussed  be low.  

Strain ellipse method 

A l t h o u g h  no t  advised ,  2 - D  s t ra in  e l l ipses  m a y  be  
d e t e r m i n e d  o n  t h r e e  p lanes .  Th is  r equ i r e s  n ine  l inea r  
d i rec t ions ,  bu t  m a y  b e  r e d u c e d  to  six wi th  t h r e e  a long  
in t e r sec t i on  d i r ec t ions  of  the  e l l ipses .  T h e s e  e l l ipses  m a y  
then  be  c o m b i n e d  as n o r m a l  s t ra in  el l ipses.  

E R R O R S  I N  ' P U R E '  P R I N C I P A L  P L A N E S  

M E T H O D S  0 

In  the  ' p r inc ipa l  p l anes '  m e t h o d s  d e s c r i b e d  an  i m p o r -  
t an t  sou rce  of  e r r o r  is d e v i a t i o n  of  s a m p l e  p l anes  f rom 
the  exac t  a t t i t ude  of  the  p r inc ipa l  p l a n e s  of  the  s t rain.  , 2° 
T h e s e  e r ro r s  a re  gene ra l l y  i n h e r e n t  in any  m e t h o d  
assuming  k n o w n  s t ra in  o r i en ta t ions ,  and  s o m e  of  the  3* 
d iscuss ion  b e l o w  app l i e s  genera l ly ,  no t  jus t  to  the  
m e t h o d s  g iven  in this  p a p e r .  4 ° 

l inear  in t e r sec t ion  lengths  o r  any  o t h e r  m e a s u r e  of  
s t r a ined  lengths .  

H o w e v e r ,  this  does  no t  m e a n  m e t h o d s  a re  equa l ly  
g o o d  at  def in ing  d i f fe ren t  pa r t s  of  an  el l ipse.  I t  can  be  
seen  f rom Fig.  2 tha t  ' d '  f rom dens i ty  d i s t r ibu t ions  is a 
b e t t e r  e s t ima te  of  the  long axis ' a '  t han  is the  va lue  'cp' 
o b t a i n e d  f rom a s t r a ined  length  m e t h o d .  O n  the  o t h e r  
hand ,  for  the  shor t  axis, s t r a ined  l eng th  m e t h o d s  give 'c '  
which  is a b e t t e r  e s t i m a t e  of  'b '  t han  is ' ~ '  o b t a i n e d  f rom 
dens i ty  d i s t r ibu t ions .  T h e  s econd  va lues  in T a b l e  1 for  
each  va lue  of  0 and  (a /b)  a re  the  f rac t iona l  e r r o r  when  
us ing the  less su i tab le  m e t h o d  for  the  axis be ing  es t i -  
ma ted ,  de f ined  as [(dp-b)dp] = [(a--cp)/a]. The  er ro r s  
g iven in T a b l e  1 are  p l o t t e d  agains t  0 in Fig. 3. 

Table 1. Percentage errors in measured ellipse axial lengths (see text) 

(a//,) 
1.5 2 3 4 6 9 

1 ° 0.0085 0.011 0.14 0.14 0.015 0.015 
0.019 0.046 0.12 0.23 0.53 1.2 

0.034 0.046 0.054 0.057 0.059 0.060 
0.076 0.18 0.48 0.90 2.1 4.5 

0.076 0.10 0.12 0.13 0.13 0.14 
0.17 0.41 1.1 2.0 4.5 9.4 

0.14 0.18 0.22 0.23 0.24 0.24 
0.30 0.72 1.9 3.5 7.6 15. 

6* 0.30 0.41 0.49 0.51 0.53 0.54 
0.68 1.6 4.1 7.3 15. 27. 

0 8* 0.54 0.73 0.86 0.91 0.95 0.96 
1.2 2.8 6.9 12. 23. 37. 

ep - I 10 ° 0.84 1.1 1.3 1.4 1.5 1.5 
_ 1.8 4.2 10. 17. 30. 46. 

15 ° 1.9 2.5 3.0 3.2 3.3 3.4 
3.9 8.7 19. 29. 45. 60. 

Fig. 2. Definition of lengths c, d, cp, dp, as used in the text, for sample 
lines at angle 0 to the principal semiaxes of lengths a and b. Lengths c 
and cp are intersection lengths proportional to lengths of intersected 
objects. Lengths d and dp are projected lengths, proportional to 
densities of intersections of objects on perpendicular sample lines. 

Lengths c and d are the better estimates of b and a respectively. 

20* 3.3 4.5 5.3 5.6 5.9 6.0 
6.6 14. 28. 40. 56. 69. 

C o n s i d e r  an  e l l ipse  (Fig.  2)  wi th  semiax ia l  l engths  ' a '  
and  'b ' .  F o r  a s a m p l e  p l a n e  cut  pa ra l l e l  to  the  shor t  axis, 
any  m e a s u r e m e n t  of  s t r a ined  length ,  inc lud ing  in te r sec -  
t ion  lengths ,  is p r o p o r t i o n a l  to  'b ' ,  whi le  a rea l  dens i ty  
d i s t r i bu t ion  is an  e s t i m a t e  of  ' a ' .  T h e  p r o d u c t  of  these  
two  (ab) is a m e a s u r e  of  e l l ipse  a rea .  S u p p o s e  the  s amp le  
is m i s o r i e n t e d  b y  an  angle  0. T h e  p r o d u c t  ( c a  r) of  
i n t e r sec t ion  l eng th  ' c '  a n d  length  ' d '  t o  a pa ra l l e l  t a nge n t  
is still  the  s a m e  m e a s u r e  (ab) of the  e l l ipse  a rea ,  wha t -  
eve r  0. T h e r e f o r e ,  the  f rac t iona l  e r r o r  in ' a '  de f ined  as 
[(a-d)/a] and  tha t  in 'b '  d e f i n e d  as [ (c-b) /c]  a r e  ident ica l .  
T a b l e  I gives  va lues  of  this  f r ac t iona l  e r r o r  for  va r ious  
angles  and  axia l  ra t ios .  

S u p p o s e  m e a s u r e m e n t s  a re  m a d e  o n  a p e r p e n d i c u l a r  
pa i r  of  s a m p l e  d i rec t ions .  T h e  r a t i o  o f  p e r p e n d i c u l a r  
l engths  (d/dp) to  t angen t s ,  and  the  r a t i o  of  any  s t r a ined  
lengths  (cr,/c) is ident ica l ,  b e c a u s e  (ct  0 = (cpdp). T h e r e -  
fo re  t he  e r r o r  in th is  as  a m e a s u r e  of  (a /b)  is t he  same ,  
w h e t h e r  t he  m e t h o d  used  is a rea l  dens i ty  d i s t r ibu t ions ,  

6 0  

o 
0 2 4 6 8 10 , ( , -~  15 

v 

Fig. 3. The percentage error, E, in the estimate of principal semiaxial 
length of an ellipsoid, which results from sample misorientation by 0 
degrees, for the indicated values of true axial ratio (a/b). The low 
errors (values circled) are for c and d in Fig. 2, defined by E = (a--d)/a 
= (c-b)/c. The high errors (dots only) are for cp and dp, defined as E = 

(dp-b)/b = (a.-cp)/a. The values are given in Table 1. 
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A l t h o u g h  the discussion above  refers to a two- 

d imens iona l  ellipse, the re la t ionships  are genera l ly  t rue 

for an  ell ipsoid in  3 - D ,  and  r e m a i n  exact  for  its pr incipal  

planes.  Note  at this po in t  that  a direct  es t imate  of X :  Z 
rat io ( X >  Y > Z  extens ion)  f rom two measu remen t s ,  one  
of X a n d  one  of Z,  is no  be t t e r  or worse t han  the  result  of 
using these values  to calculate [(X/Y). (Y/Z)]  if the same 
Y value is used (even  for an  absurd  value  of Y). This 
point  is significant  in the context  of methods  which esti- 

ma te  lengths p ropor t iona l  to each of X, Y a n d  Z,  and  not  
just  rat ios (X/Y),  (Y/Z),  (X/Z). I t  should no t  be  thought  
that  direct  use of the ' X Z '  p lane  to measure  X :  Z n e c e s -  

sad ly  conveys  any  advantage  relat ive to indirect  evalua-  
t ion  of this ratio,  at least as far as the errors  u n d e r  discus- 
s ion here  are concerned .  

Hybrid method 

Table 2. Percentage errors in X: Zratio for plane strain resulting from 
deviations by angle 0 from true orientations, for various true X : Z 
ratios. (1) The combined contribution of X and Zmeasurement errors 
to the overall error in the hybrid method of this paper. (2) The maxi- 
mum error for deviation by 0 in all four measurements of the hybrid 
method. (3) The error from Xand Zmeasurements in the determined 
X : Z ratio by any pure method, whether based on object intersection 

measurements or not 

X : Z Ratio 

1.5 2 3 4 6 9 
Deviation 

0 0.068 0.091 0.11 0.11 0.12 0.12 
2 ° 1.13 0.21 0.35 0.48 0.72 1.1 

0.11 0.23 0.54 0.96 2.1 4.1 

4 ° 
0.27 0.37 0.43 0.46 0.47 0.48 
0.51 0.85 1.4 1.9 2.8 4.2 
0.43 0.90 2.1 3.7 7.8 15. 

Cut  just  two sample  planes ,  one  paral lel  to the ' Y Z '  
pr incipal  p lane  and  the o ther  paral le l  to the  'XZ" pr in-  

cipal plane.  Measure  the areal  densi ty  dis t r ibut ions  on  

these two p lanes  as an  es t imate  of 'X" and  'Y' .  Measure  
the l inear  in te rsec t ion  lengths a long 'Y '  and  ' Z '  as an  
es t imate  of these  lengths on  the  'YZ'  plane.  The  
resul t ing X : Y : Z ratios have lower er ror  arising f rom 

misor ien t ing  sample  p lanes  t h a n  for any  ' pu re '  me thod ,  

whe ther  based  on  ob jec t  in tersect ions  or not .  

For  cons ide ra t ion  of errors  assume that  each sample  
p lane  deviates  f rom its pr incipal  p lane  by an  angle O in 

the worst  possible  direct ion.  The  pole  of 'YZ" deviates  
f rom 'X '  towards 'Z ' .  The  pole  to the 'XZ" p lane  deviates  
f rom 'Y '  towards  'X ' .  Because  X i s  m e a s u r e d  by densi ty  
d is t r ibut ion ,  the er ror  in  the X v a l u e  is small,  a lmost  all 

e r ror  in  the  X :  Yra t io  be ing  due  to Y, as the shor ter  axis 
of the ellipse m e a s u r e d  by densi ty  dis t r ibut ion.  This 
er ror  is therefore  l imi ted by the X :  Yra t io .  Because  the 

length Z is measu red  by in te rsec t ion  length,  the er ror  in 

this value is small,  a lmost  all e r ror  in the Y: Z r a t i o  be ing  
due  to Y, as the  longer  axis of an  ellipse measu red  by a 
s t ra ined  length  method .  The  e r ror  is therefore  l imited by 

the Y :  Z ratio.  The  errors  in  the resul t ing X :  Z r a t i o  are 

shown in Tab le  2 and  Fig. 4 for p lane  strain, for a variety 

of angu la r  devia t ions  and  s t ra in  ratios. The  top figure is 
the er ror  in the hybr id  method ,  due  to angu la r  dev ia t ion  
f rom pr incipal  p lanes  as descr ibed,  if the two 'Y" 
m e a s u r e m e n t  direct ions  are co inc ident  (whether  correct  

or  not) .  As  such, this figure represen ts  the combined  
con t r ibu t ion  to overal l  e r ror  of the errors  in the X a n d  Z 
est imates.  The  second figure is the c o m b i n e d  er ror  in the 

hybr id  m e t h o d  resul t ing f rom angula r  deviat ion,  

assuming  e a c h '  Y' m e a s u r e m e n t  d i rec t ion is misor ien ted  
by the angle O in its worst  possible direct ion.  In  the case 

of the l inear  m e a s u r e m e n t  this is towards  Z,  and  in  the 
areal  densi ty  m e a s u r e m e n t  towards X. This figure, 
where  all four  m e a s u r e m e n t s  are miso r i en ted  by O in the 
worst  possible way, is the m a x i m u m  error  in  the hybr id  

me thod  f rom this er ror  source. In  pract ice errors should 
lie be tween  these two figures, g iven the devia t ion  O still 
in bo th  'X" and  'Z" direct ions.  Fo r  compar i son ,  the third 
figure given in Tab le  2 is the er ror  due to these two 

6 ° 

8 ° 

10 ° 

12" 

15 ° 

0.61 0.82 0.97 1.0 1.1 1.1 
1.2 1.9 3.1 4.2 6.2 9.0 
1.0 2.0 4.6 7.8 15. 27. 

1.1 1.5 1.7 1.8 1.9 1.9 
2.0 3.3 5.4 7.2 I1. 15. 
1.7 3.5 7.8 13. 24. 38. 

1.7 2.3 2.7 2.8 2.9 3.0 
3.1 5.1 8.2 11. 16. 22. 
2.7 5.3 11. 18. 31. 47. 

2.4 3.2 3.8 4.1 4.2 4.3 
4.5 7.3 11. 15. 21. 29. 
3.8 7.5 15. 24. 38. 54. 

3.7 5.0 6.0 6.3 6.5 6.6 
6.8 11. 17. 22. 30. 39. 
5.8 11. 22. 32. 47. 62. 
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4 74 

2 4 6 8 10 12o 0 15 

Fig. 4. The maximum percentage errors, E, in the estimate of principal 
strain ratio X : Z, for plane strain, which may result from misorienta- 
tion of samples by 0 degrees from the principal directions Xand Z, for 
the true X: Z ratios indicated. The high errors (values circled) are for 
normal methods of strain determination, including 'pure' density 
distribution methods of this paper. The intermediate errors (values 
crossed) are the maximum for the proposed hybrid density distribution 
method. These can occur only if both 'Y'samples are also in error (in 
different directions) by angle 0. The low errors (dashed lines, values 
dotted only) are the maximum in the hybrid method if a common' Y' 
direction is used for the two ' Y' measurements. The advantage of the 

hybrid method is considerable for X : Z ratios of 2 or more. 
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angular deviations in a directly measured X:  Zra t io  by a 
'pure '  method, whether by areal density distributions, or 
by linear intersection lengths, or by any other  method of 
strain estimation based on strained lengths. 

Table 2 illustrates clearly how good the hybrid 
method described here  is in terms of these errors. 
Perhaps it would be fairer to say that it illustrates how 
bad in general other  methods of strain measurement are 
that assume that samples can be taken parallel to prin- 
cipal planes. Ei ther  way, the hybrid method, which is 
also potentially very quick, shows considerable advan- 
tage, and could be practically the most generally applic- 
able and useful of the methods discussed in this paper. 

CONCLUSIONS 

General  conclusions concerning use of the concept of 
'strain ellipsoid' can now be drawn. In an early section it 
was argued that for areal density distributions the strain 
should be determined without recourse to 2 - D  projec- 
tion ellipses as an intermediate step. Later  it was argued 
that for relative strained length measurements,  
including intersection lengths, strain should again be 
determined without recourse to 2 - D  ellipses (strain 
ellipses in this case). Now that the various methods of 
strain determination have been described we can take 
this point further. It is not just 2 - D  ellipses which are 
unnecessary. The concept of 'strain ellipsoid' plays no 
necessary part  in the determination of strain by any 
method,  such as those here, which uses a homogeneous 
set of single measurements in known orientations. Sec- 
tions or projections of the strain ellipsoid are therefore 
only worthwhile if a comparison with other  strain mea- 

sures is intended at the stage of a 2 - D  sample area. They 
are otherwise redundant.  

As for intersection density methods, it has been shown 
that both areal density distributions and linear intersec- 
tion lengths can be used correctly. The areal density 
distributions are practically more awkward but poten- 
tially more precise. If principal strain directions are 
known or assumed, both pure methods are greatly sim- 
plified, but errors are no better  than with any other  cur- 
rent method assuming these orientations. A hybrid 
method, using both areal density distribution and linear 
intersection length is proposed which can actually 
reduce such errors, while remaining quick and simple to 
perform. 
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A P P E N D I X  A 

Angular  relationships between local axes and general  reference axes 
in this paper  are frequently used in matr ix terms,  and more  specifically 
in terms of a suitable Euler ian angle set defined as in Fig. 5. The  advan- 
tage of this sys tem is that  the three angles specified correspond to those 
conventionally measured  by geologists. If X = north, Y = east, Z = 
down; then  et =strike,  and [3 = dip of the local X '  Y' plane, and ",/is the 
pitch in this plane of X' .  

If x'  = E x relates local coordinates to those using the reference axes, 
and !~ ,  R0, 'R v are the individual rotations by et, [3, -/; then: 

Ar'~/~ ~trike' 
~di~ 'p i tch" 

Fig. 5. Euler ian angles ot, [3, ~t relating r ight -handed local orthogonal  axes X ;  Y', Z ' t o  reference axes X, Y, Z, oriented such 
that cx = strike ( left-hand rule), 13 = dip, ~ /=  pitch of X '  in the X'Y'  plane. As  in Appendix  A. 
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(,o 
0 cos 

0 - sin fl 

(cos `" cos y - s i n  `" cos fl sin y) 

= / ( - c o s  a sin 3' - sin`" cos / / cos  3') 

\ ( s i n  `" sin t )  

Note that : 

si:,~ /c°s̀ " 
cos,: 

(sin `" cos 3' +cos  a cos fl sin 3') 

( -  sin a sin y + cos a cos fl cos 3') 

( - c o s  u sin t )  

E-i = R f l R f i R ~  "1 = (R~RpR~) T = E T. 

COS `" 

0 

(sin fl sin 3') k 

(s in/ /cos  3 ' ) /  

(cos ,6) / 

A P P E N D I X  B 

P a n  1. De t e rmina t i on  o f  a Projeci ion El l ipse  

A n  ellipse has  semiaxes a and b, with one  axis at an  angle ¢ to a 
reference line. Lengths  a, b and  angle ¢ axe unknowns  (Fig. 6). 

• s i n  g )  

I/cos g . o )  

Fig. 6. Notat ion used in Appendix  B for a tangent  line at an  angle cx to a 
reference line itself at an  angle ¢t to the principal axis of  a strain ellipse. 

Sample planes lie at angles ct clockwise of the  reference line, and  
density distr ibutions on  the  sample  planes  a r e ' d ' .  The  perpendicular  
length, p, is proport ional  to the  density on  the  sample plane. 

d = K .p .  
In  the  uns t ra ined  state the  tangent  was pcrpcndiculax to a radius of  unit  
length at an  angle 0 to the  principal axis. The  point  of  contact  lay at 
(cos0, sin0). The  tangent  me t  the  principal axes at (1/cos0,0) and 
(0,1/sin0). In  the strained state these points  became: ( a  c o s 0 ,  b s i n 0 ) ;  
(adcos0, 0); and (0,b/sin0). 

p = (a/cos O)cos 0' = (b/sin 0)sin 0' 

p2COS2 0 = a2cos20 ' 

p2sin20 = b2sin20 ' 

p2 = a2cos20 , + bZsin20 , = [(a 2 + b 2)/2] [cos20' + sin20 '] 

+ [(a 2 - b 2 )/21 [cosZ0 ' - sinl0 '] 

= [ ( a  1 +b2)/2] + [(a 2 -bz ) /2 ]cos  20'. 

But 9 0 °  = 0' + ` "  + 0 

.'. cos 20' = - c o s ( 2 ~ + 2 0 )  

... p2 = [(a 2 + b2)/21 _ [(a 1 _ bZ)/2]cos(2a + 20). 

Putting: p = d / K  

s = (aZ+b2) /2  "[ 

t = (a s - bZ)/2 ( l )  

d21K 2 .= s - t .  cos(2`" + 20) (2) 

= s - t .  (cos 2r~. cos 20 - sin 2`'. sin 20). 

Referr ing d and ct to specific sample planes by subscripts: 

(d 2 - d2) /K  2 = - if(cos 2`" 2 -- COS 2`" l). COS 20 

--  (sin 2a2-- sin 2`'1 ). sin 201 

(d 2 - d ~ ) / K  2 = - t [ ( c o s  2`'3 - c o s  2`'2). cos 20 

- (sin 2a3 - s i n  2`'2).sin 201 

(d 2 - d  2)[(cos 2"3 - c o s  2`'2)cos 20 - (sin 2a3 - s i n  2a2)sin 201 

= (d 2 - d2)[(cos 2`'2 - cos 2al)cos 20 

- (sin 2`'2 - s i n  2al)sin 20]  

cos 20([(d 2 -d2)cos  2"3 - (d 2 -d2)cos  2`'2] 

- [(d ] - d22)cos 2a2 + (d ] - d2)cos 2`'11) 

= sin 20([(d 2 -d2)s in  2`" 3 - (d 2 -d2)s in  2`'2] 

- [(d 2 - d2)sin 2a2 + (d~ - d2)sin 2a: 1) 

(d 2 - d,2)cos 2`'1 + (dx 2 - d2)cos 2`'2 + (d22 - d2)cos 2`'3 
tan 20 = 

(d 2 -d22)sin 2`'t + (d 2 - d~)sin 2`'2 + (d22 - d2)sin 2`'3 

This gives 0, hu t  note  that  according to the range of 2¢ used,  it will refer 
to whichever of  the principal etlipse axes lies in this range. Us ing  the 
value 2# to put  known values [~ = ( 2 a + 2 ¢ )  into (2) gives 

d 2 = K2s  + K 2 t  cos fl (3) 

(d22 - d 2 )  = K2t( cos t2 - c o s  ill) 

K2t  = ( d2 - d2)/(cos t2 - cos/71). 

Knowing K2t, using any equat ion (3), [K2t.cosl3] can be evaluated and 
substi tuted to give: 

From equations (1): 

Therefore: 

K2s  = K Z t  cos  fl - d 2 

K 2 a 2 / 2 +  K 2 b 2 / 2 =  K 2 s  

K2a2/2 - K 2 b 2 / 2 =  K2t .  

K2a  2 = (K2s) + (K2t) 

K 2 b  2 = (K2s) -- (K2t), 

Part 2. Combining Projection Ellipses 

Consider  each ellipse, with axial lengths 'Ka '  and 'Kb '  to be in its 
locally defined x* y* plane, with the axis length 'a '  along x*. These  axes 
can be related to the  x, y, z, reference axes by a matrix E (see Appendix  
A) for which the  e lements  are known. The  strain can be represented by 
t ransformation matr ix S. The  distance 'd '  to a tangent  to the ellipse, 
measured  in a perpendicular  direction, at an  angle ¢ to x*, can be 
writ ten in terms of an  axis rota ted by ¢~ f rom x* in the  x* y* plane. The  
following equat ions can then  be  formed,  using similar a rguments  to 
those in Appendix  C: 

s.° o)(. t 0 0>  os+0 : = ,  

0 1 z* 

x *  = E x  

x = S x  o. 

In the undeformed state: 

(.s o s. o il 
(lie 0 0) sl 0o cOS0o 

0 

/ / c o s  0o - sin 0o 
/ 

X t sin~° COS ~)° O 
, 

° 
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Hence: 

((i/a) 0 
f c o s $  s i n s  i )  

O) i - s i n , ~  cos~  ESSTE T 

\ 0  0 

Putting T = SS r, and M = ETE r, and multiplying gives: 

(m I t/dZ)cos2 ck + (mt2/d2)2 sin ~b cos t# + (m22/d2)sin2 ~p = 1/c 2. 

But : 

(KZa2/d2)cos2c# + (K2bZ/d2)sinZr~ = 1 

Hence, by comparison: 

mtt = K2a2/c 2 

/1112 ~ 0 

m2z = KZb2/c 2. 

As E is known, these values can be substituted for these elements of 
M in the linear equations in the elements of T contained in M = E T E T. 
This is the same matrix T as in Appendix  C, where further procedure 
for solution is described. 

A P P E N D I X  C 

Using the Eulerian system of Appendix A,  the equation of a local 
sample plane is z* = 0. That of a parallel plane (tangent to a strain 
ellipsoid) is z* = d or, in preparation for further matrix notation: 

(0 0 1/d)x*= 1. (1) 

The local axes are related to the reference axes by: 

( x ' )  ( i  0 0 I ( C O i C t  sinct 0 3  ( i )  
y* = cosfl sin// - s i  a cos~ 0 (2) 

z* - sin// c o s / / /  0 1 

where ct and 13 for the particular sample are known. Combination of 
the above equations (1) and (2) gives, as the equation relating a tan- 
gent plane of the ellipsoid to the reference axes: 

(sinotsin///d -cosa:sin///d cos///d)x = 1 (3) 

The deformation is specified by the following equation relating x, y, 
z coordinates of any point in the strained state to the coordinates of its 
initial position x0, Y0, z0: 

x = Sx 0. (4) 

Hence [from equations (3) and (4)], points lying in a plane which was 
by the deformation to become a tangent plane at distance d, parallel to 
the sample, were specified by 

(sin~tsin///d -cosctsin// /d cos///d)Sxo = 1. (5) 

But this was a tangent to a sphere for which, if the distance from centre 
to tangent is denoted 'c', an equation could be written equivalent to (3) 
above: 

(sin%sin//o/C -cos%sin / /o /c  cos//o/C)X o = 1. (6) 

The angles % and 130 giving the prestrain orientation of the plane 
which was to become the sample are unknown, but using sin 2 + cos 2 = 
1 we can write 
(sin % sin//o/C - c o s  ~t 0 sin//o/C cos//o/C) 

_ s i n  u o sin//o/C h 1 

x cos % sin//0/c I = c~. (7) 

\cos//o/C / 
Using the equivalence of  equations (5) and (6) above, we can therefore 
write: 

(sinctsin///d --cosctsin///d cos///d)SS r 

sin ct s i n / / / d \  

x ~ - c o s ~  s i n f l / d ) = c l  ~. (8) 

\ cos///d / 

Define a new matrix T = S S r and noting that it is symmetric, multi- 
plying equation (8) out gives: 

(sin2a sinZfl/d2)ttt + (cos2ct sinZfl/d2)t22 + (cos2fl/d2)t33 
+ ( - 2 sin ct cos ct sin Zfl/d 2)t 12 + (2 sin ~t sin fl cos fl/d 2 )/13 

+ ( - 2 cos ct sin fl cos fl/d2)tza = 1/c 2. (9) 

In this equation, ct, 15 and d are known from measurements for each 
sample plane. 'c' remains unknown, being the intersection object 
density on all planes in the unstrained state. Use of values of a, 13 and d 
for six (or more)  orientations sets up simultaneous equations for which 
solution determines (or overdetermines) the elements 't ' of the T 
matrix, giving them in terms of the common unknown 'c'. 

U p  to this point no assumption has been made about the strain, 
except that its description by a transformation matrix S precludes any 
translation of the origin. For  convenience and convention, assume now 
that the strain is at constant volume and is irrotational. For constant 
volume det S = 1 and so det  T = 1. This fixes the value of ' c '  and leaves 
the matrix T specified uniquely. In terms of local coordinates oll axes 
X, Y, Z paralleling the principal strains, an irrotational deformation 
can be represented as 

X ' =  m X or X ' = L X  (10) 

0 
where l, m, n are the principal semiaxial lengths of the strain ellipsoid 
and ( l m  n) = 1. If the stationary principal strain axes of the irrotational 
strain represented by S are related to the reference axes by rotation R, 
then 

S = R - I L R  (11) 

T = SS r = R I L R R r L r R - l r .  (12) 

But, as R - I  = R  r and L r =  L: 

T = R - I L R R - 1 L R  = R - I ( L . L ) R  03) 
Determine the characteristic roots, h ('eigenvalues'), of T from the 
cubic equation 

de t (T-) . i )  = 0 (14) 
where I is the identity (or unit) matrix. As these are also the roots of 
( L L )  they are the principal quadratic extensions of the strain (ht,)-2, 
x33. 

The direction of each principal axis 'i ' corresponding to each quad- 
ratic extension k~ may be found by solving the following equation for 
the ratio of the coordinates of a vector along the principal axis (xl, y~, 
Zi): 

Txi - ;.#i = 0. (15) 
These values can then be scaled such that x~ 2 + y2 + z2 = 1, and they are 
the direction cosines of that axis. 

It is often geologically convenient to describe a strain in terms of the 
strike and dip of the X Y p l a n e  and the pitch of X i n  that plane. These 
angles are conveniently, el, 13, "y respectively using the Eulerian system 
as in Appendix A. To find them construct a matrix '(R-l) ' by com- 
pounding the principal axial direction cosines thus: 

X 3 

(R 1)=  Yl Y2 (16) Y3 

Z 1 Z 2 2 3 

Consider the matrix product T (R-l), and then Tx~ = h~t~ for its ele- 
ments: 

(tllXl+t12yl+t13Zl) (tllX2+tl2Y2+tl 3Z2) " ' ' /  

T ' ( R - t )  = ~ (t21x1+122yl+123213. .. etc . . . .  "'" 

= | ' ~ I X I  "~'2 Y2 "~'3 Y3 = 3'1 3'2 )-~. 

).1zl 22z2 /oszs/  zl z2 0 ).3 

= (R- I ) (L .L)  (17) 

If TR -I = R -I L.L, then T = R - I  L.L I~ and the matrix R (the 
inverse of R -I defined in equation (16)) is shown to be the matrix R o f  
equations (11)-(13) above. The angles required (a, 13, ~/) may be 
obtained from the identity of R with the matrix E of Appendix A, 
bearing in mind that for these matrices, their inverse is their transpose. 

If, alternatively, the orientation of each axis is required in polar 
coordinates (bearing and plunge), these are simply obtained using the 
x, y, z coordinates (direction cosines) of the principal axes. For  each, 
the bearing ¢ is given by arctan (y/x), and the plunge 0 by 
arctan [z/(xcoso + ysin¢)], using whichever value of ¢ between 0°and 
360 ° gives a conventionally positive 0. 


